
) .

FIDIL Reference Manual
Release 4.0*

Paul N. Hilfinger Phillip Colella

August~~.
\

FIDIL (for FInite DIfference Language) is a language supporting finite
difference and particle method computations. It extends the semantic do­
main of FORTRAN-like algebraic languages with facilitie~ for construction,
composition, refinement, and other manipulation of grids-called domains­
and for performing computations on functions defined over these domains.
FIDIL is an attempt to automate much of the routine bookkeeping that forms
a large part of many programs involving PD Es, and to bring the semantic
level of these programs closer to that at which the algorithms are conceived
and published.

This report gives the current definition of the FIDIL language. We expect
the definition to evolve rapidly with experience.

1 Notation

In BNF syntactic descriptions, a construct of the form "{C ... }" indicates
o or more instances of the C. A construct of the form "{C (f •• • }," where
(f is a punctuation mark, indicates 0 or more instances of C separated by (f

characters. A superscripted '+' after the closing brace indicates 1 or more
instead of 0 or more. A construct surrounded by square brackets ([]) indicates
o or 1 instances of the construct. A list of BNF clauses separated by vertical
bars (I) denote alternatives. Set braces, square brackets, vertical bars, and
other meta-syntactic marks that are intended as terminal symbols in the

*This work funded by NSF (DARPA) grant DMS-8919074.

1

grammar are surrounded by single quotes (e.g., '[' and ']'). Other terminal
symbols may also be placed in single quotes, as clarity dictates.

Non-terminal symbols appear within angle brackets «». Parts of the
symbol that appear in slanted type are comments for syntactic purposes, but
may have semantic significance. For example, "<infix operator>" is syntac­
tically any operator, but must also appear within the scope of a declaration
for that operator as an infix operator. Certain non-terminals are not defined;
their definitions (which may be context-sensitive) are implied by their names.

2 Lexical Details

FIDIL source text is generally free-form. Blanks or punctuation must delimit
each end of all keywords, identifiers, and numbers, and may not appear within
them. Blanks or non-operator characters (see below) must delimit each end
of all operators, and may not appear within them. Beginnings and ends
of lines, comments, and tabs all count as blanks outside of string literals.
Blanks are insignificant except as delimiters or characters in string literals.
Keywords, which in the rest of this document are indicated by bold face type,
are reserved.

Identifiers have the following, fairly conventional, syntax.

<identifier> ::= <letter> { <letter or digit> ... }
<letter> ::=

'a' 1 ... 1 'z' I 'A' 1 ... 1 'z' I '-'

<digit> ::=
'0' I ... \ '9'

Identifiers may be of any length. The cases of letters composing the identifier
are significant; for example the identifier 'x' is distinct from 'X'.

Numeric literals are formed according to the following syntax.

<number> ::=
<integer literal> ['i' 1
<real literal> ['i' J

<integer literal> ::=
{ <digit> ... } +

<real literal> ::=

2

<integer literal> <exponent>
<integer literal> '.' [<integer literal> [<exponent>]]
'.' <integer literal> [<exponent>]

<sign> ::= '+' I '-'
<exponent> ::=

E [[<sign>] <integer literal>]
D [[<sign>] <integer literal>]

The letter 'i' appended to a number (without intervening blanks) indicates
a purely imaginary quantity. The letter 'D' in the exponent of a real literal
indicates a long real quantity and 'E' denotes a short real quantity. In the
absence of such an indication, 'D' is assumed. All of the letters 'i', 'E" and
'D' in these contexts may appear in either case. When the integer literal
in an exponent is missing, it defaults to o. Programmers can specify signed
numbers as expressions involving a numeric litera] and a unary minus or plus
operator.

String literals denote arrays of characters (type [1 .. n] char, for n ~
o the number of characters.) They have the following syntax.

<string literal> ::=
'II' { <string literal character> ... } 'II'

<string literal character> ::=

<any character other than II and end of line>
) \) <any character other than end of line>

Characters following a backslash are interpreted as in C.
Comments begin with '/*' and end with '*/'. They may span any number

of lines. A '/*' sequence inside a comment is ignored.

3 Basic Program Structure

Syntax

<compilation> ::= {<compi1ation item> ';' ... } [';']
<compilation item> ::=

<outer declaration>
export { <identifier> , ... } +

3

<outer declaration> ::=

Semantics

[external] <variable declaration>
<constant declaration list>
<operator declaration>
<pragma>

A compilation is a collection of declarations of variables, subprograms,
and other constants, together with directives for linking together declarations
in separately processed compilations. A program is a collection of one or more
compilations that is sufficiently complete to execute.

Each outer declaration has a scope that begins at the defining instance
of the entity declared and continues to the end of the compilation. The
exports clause extends the scope of the declaration of any identifier listed
to other compilations that reference the identifier in external declarations.
Types may not be exported (but the #include preprocessor directive can
give the effect of exporting and importing types.) An external declaration is
either a variable declaration prefixed by the keyword external or a subpro­
gram constant defined with a literal whose body is external (see section 7.2).
In any compilation, there must be exactly one non-external declaration of
each identifier in an exports list (such a declaration is called an exported
declaration) .

When the compilations forming a program are linked, there must be at
most one exported declaration for any identifier. There must be an exported
declaration for every external variable and for every external subprogram
for which there is a call in one of the compilations. The type and class
(variable or constant) of every external dedaration must match that of the
corresponding exported declaration.

Every program (but not every compilation) must contain a distinguished
procedure main. Execution of the program consists of first executing all outer
declarations in order (that is, in textua.l order within each compilation, with
compilations executed in an order specified to the linker) and then calling
the procedure main.

Examples

export current_parameters, force-In, nd;

4

let
force..fn = proc (Position x) -> Force: ... ;
,* Exported function. *1

[1 3] long real current_parameters;
1* Exported variable *1

4 Preprocessing

It is often useful to be able to group shared definitions in header files that
can be incorporated in other source files without fear of transcription error.
For this purpose, FIDIL uses the same preprocessing as is provided by the
C language. Source lines beginning with the character '#' are assumed to
be preprocessor directives. A directive of the form

'include llfile.name"

will insert the contents of the named file in place of the directive.

5 Declarations

Syntax

<constant declaration list> ::=
let { <constant declaration> , ... } +
extend { <subprogram constant declaration> , ... } +

<constant declaration> ::=

<identifier> = <expression>
'(' { <identifier> , ... }+ ')' = <expression>
<operator> = <subprogram expression>
<identifier> = <type>

<variable declaration> ::=
<type> { <identifier> , ... } +

5

Semantics
A scope is a section of program text. Certain program constructs deter­

mine a defining scope. For example, the text of a subprogram literal is a
defining scope. The scope of a declaration is the section of program text to
which it applies. It begins at the point of the declaration (i.e., it includes
the text of the declaration itself) and continues to the end of the innermost
defining scope in which that declaration appears. The meaning of a given
instance of an identifier or operator is governed by the declarations in whose
scope it appears. When more than one declaration is present, the one that
applies is determined by the rules for resolving ambiguity in section 5.1.

Some declarations do not themselves indicate the creation of a declared
entity, but rather make reference to another declaration that appears else­
where for the purpose of enlarging that declaration's scope. We refer to such
definitions collectively as incomplete declarations, and all others as complete
declarations. The external declarations form one kind of incomplete dec­
larations. The other kind is the forward declaration, defined described in
section 7.2. External declarations may be used to enlarge the scope of a
declaration in one compilation to another compilation. Forward declarations
may be used to enlarge the scope of a subprogram backwards from its com­
plete definition so as to permit mutual recursion. They may also be used
for documentation. It is not necessary that there be a complete declaration
corresponding to a given incomplete declaration if the entity created by the
definition is never referenced in the text of a compilation.

Each execution of a complete declaration creates an instance of the de­
clared entity (a variable, type, or constant). Likewise, every execution of
the text forming a defining scope creates an instance of that defining scope,
which vanishes when that execution of the defining scope completes. The
extent of an instance of a declaration is the period of execution time during
which that instance exists. This extends from the execution of the decla­
ration itself until exit from the instance of the defining scope during which
the declaration was executed. Outer declarations each have a single instance
whose extent ends only upon termination of the entire program.

Constant declarations define identifiers and operators to the left of the
equals (=) signs to denote the values (subprograms are also values) or types
to the right of the equals signs. Values are computed when the declaration
is executed. When the defining expression is a composite object (a map or
record), the left side may be a list of identifiers in parentheses, which are

6

ascribed the values of the components of the defining expression according
to position. There must be exactly as many identifiers as components.

The declarations in a constant declaration list may either be opaque or
transparent, depending on .the keyword that heads the list-let or extend,
respectively. Informally, opaque declarations hide previous declarations of
the same identifiers, while transparent declarations introduce additional pos­
sible interpretations of identifiers hiding previous ones. Variable declarations
and formal parameter declarations are also opaque. Section 5.1 defines these
terms more precisely.

Identifiers may also be defined to denote types. Types may not be defined
in transparent declarations. Section 6 describes the possible definitions for
such identifiers.

Examples

let
nd = 3. 1* Simple scalar *1
Force = [1 .. nd] long real, 1* Type *1
(xO, xi, x2) = V; 1* Where V is a vector dimensioned 1 .. 3 *1

5.1 Resolving ambiguity

When an instance of an identifier appears in the scope of more than one dec­
laration of that identifier, there are two ways of resolving the resulting ambi­
guity. First, certain declarations hide previous ones due to opacity. Second,
the type-consistency rules (which govern, for example, the required types for
subprogram parameters) restrict the set of admissible interpretations of an
instance.

An opaque declaration of an identifier (as defined in section 5) hides any
preceding declaration of that identifier throughout the scope of the opaque
declaration. As an aid to catching certain kinds of error, an opaque declara­
tion may not hide a declaration in the same defining scope.

When, after considering opacity, there are still multiple declarations cov­
ering a particular instance-in which case the declared identifier or operator
is said to be overloaded-there must be a single interpretation that is con­
sistent with the type rules of the language. In general, the interpretations
of entire sets of instances must be determined simultaneously. A program

7

is unambiguous if exactly one choice of eligible declarations for each of its
identifier instances yields a result in which every (sub)expression and object
has a correct type for its context.

5.2 Subprogram and Operator Declarations

Syntax

<operator> ::=
<predefined operator>
<other operator>

<other operator> ::=
<identifier>
<operator character> [<operator character> [<operator character>]]
'(' <operator character> [<operator character>] ')'

<operator character> ::=

'*' I ,/, I '+' I '-' I '<' I '>' I '='
(4)' I '#) I 'Ye' 1 '1'1 't' I ,-, I ,-,

<operator declaration> ::=

Semantics

prec <predefined operator> operator { <other operator> , ... } + ;
postfix operator { <other operator> , ... } + ;

An ordinary subprogram is declared by a constant declaration whose
right-hand side is a subprogram literal. A subprogram's designator may
be an operator, in which case calls on the subprogram take the form of ex­
pressions in which the designator acts as a prefix, infix (binary), or postfix
operator. Prefix and postfix operators must be declared with one argument;
infix (binary) operators must be declared with two. Declarations of oper­
ators as infix versus prefix operators are distinguished by the numbers of
arguments. When an identifier is an operator, it is reserved for use as an
operator only. In a given compilation, an operator may be overloaded to be
both an infix and a prefix operator but no other combination is allowed.

Any 'other operator' used in a program must be declared in an operator
declaration before its first appearance in either an expression or a subpro­
gram designator spec. All such operators are left associative and have the
same precedence as the predefined operator that appears in their operator

8

declaration. An operator may appear in any number of operator declarations
within a single compilation, but must be given the same precedence in each.
All postfix operators have the highest precedence.

6 Data Types and Type Constructors

Syntax

<type> :!=
<user-defined type identifier>
< basic scalar type>
<record type>
<domain type>
<map type>
<su bprogram type>

Semantics
FIDIL supports several classes of data type, and allows the programmer to

define new types within some of those classes. The following sections describe
the type denotations. Identifiers defined to be types may be used where type
names are allowed (e.g., to define variables or the types of parameters.)

In several places, we will refer to two types as being equivalent. A type
is always equivalent to itself. The following sections define type equivalence
for particular classes of types. We will also refer to types being assignment
compatible. We say that a type TI is assignment compatible with type T2 if
values of type Tl are allowed to be assigned to objects of type T2 , or passed
as value parameters to formals of type T7,- Equivalent types are always as­
signment compatible. The following sections define assignment compatibility
for each type class.

6.1 Basic Scalar Types

Syntax

<basic scalar type> ::=

[long] integer

9

Semantics

[long] real
[long] complex
logical
char

The basic scalar types are the familiar numeric, logical (true/false valued),
and character types. The meaning of the qualifier "long" is implementation­
dependent. In the case of real and complex types, it is intended to correspond
to double-precision declarations in FORTRAN. It is not necessary for long
quantities to have a precision or range different from non-long quantities.

Two scalar types are equivalent if and only if their denotations are equiv­
alent. A short scalar type is assignment compatible with the corresponding
long type (but not the reverse).

6.2 Record Types

Syntax

<record type> ::=
struct T { <field group> ; ... } + [;] ']'

<field group> ::=
<type> { <identifier> , ... }

Semantics
A value or object having a record type is composed of fields as indicated

in the definition of the record type. If T1 , ••• ,Tn are type denotations, then

let R = struct [Tl Xn,X12, ... ; ..• Tn X n}, ...]
R x;

defines R to be a record type and x to be a single variable of that type. Each
R consists of fields, which are accessed by (prefix) selectors named Xij' The
syntax is identical to that for function calls. Like subprograms in general,
record field selector names may be overloaded.

A record type M is equivalent to type Al' if and only if M' is a record
type with the same number of fields in the same order with the same names,

10

and the type of each field of M is equivalent to the corresponding field's type
in M'. Only equivalent record types are assignment compatible.

6.3 Map and Domain Types

Syntax

<domain type> ::=
domain
domain' [' <integer expression> ']'

<map type> ::=
[flex] <unspecific map domain> <type>

<specific map domain> <type>
valtype '(' <domain expression> ')'

<unspecific map domain> ::=
'(' ['.' < integer expression>) 'J'

<specific map domain> ::=
'[' < domain expression> 'J'
<rectangular domain constructor>

An n-dimensional domain is a subset of zn, and has a domain type de­
noted domain En] We call n the arity of the domain. An element of a
one-dimensional domain is an integer; an element of an n-dimensional do­
main, for n > 1, is itself a map with type [1 .. n] integer; that is, it is a
tuple of n integers. The notation valtype(D) is an abbreviation of the type
[1 .. n] integer, where n > 1 is the arity of D, or of the type integer if
n = 1. Two domain types are equivalent if their arity is identical.

A map is a mapping from a domain to some codomain; map types are
an extension of ordinary array types. Two map types are equivalent if their
domains have the same arity, they have the same flexibility (indicated by
the presence or absence of the keyword flex), a.nd their codomain types are
identicaL Two map types are assignment compatible if both domains have
the same arity and the codomain types are equivalent. A map type is said to
be unspecific if it is not flexible and either has an unspecific map domain or an
unspecific codomain. An unspecific domain is denoted [] (one-dimensional)
or [*n] (n-dimensional). Record types are unspecific if they have at least
one unspecific field type.

11

The modifier flex indicates that variables of the type have a modifiable
domain. If M is a map type denoted by

flex [*n] T

and X is a variable of type M, then it is legal to assign to domainOf(X)
and it is legal to assign to X a map with a domain differing from that of
X. In general, T may be a type with map components that themselves have
unspecified domains. An assignment to X will set those domains as well as
the domain of X. The domain of an individual component of X, however,
cannot be changed independently of the rest of X, unless that component has
a flexible type itself (see the examples). A variable declared to have a flexible
type initially has all flexible domains (of it and its components) initialized to
the empty domain. A variable may not be declared with an unspecific type.
Unspecific types are mainly intended, instead, for use in formal parameter
specifications.

Examples

let
FlexTabType = flex [] struct [[J integer A; integer B],
FlexRectType = flex [] [] integer,
RaggedType = [] flex [] integerJ
FlexRaggedType = flex [] flex [] integer,
PairRaggedType = [1 .. 2] flex [] integer,
PartRectType = [1 .. 3] [] integer,
ARectType = [1 .. 10] [0 .. 9] integer,
F = proc (ARectType X; ref RaggedType y) ... ;

FlexRectType Q;
FlexRaggedType R;
ARectType S;

1* RaggedType T;
1* PartRectType U;
PairRaggedType V;

ILLEGAL (unspecific domain) *1
ILLEGAL (unspecific domain in codomain) *1

12

Q : = [[1, 2 » 3], [7 t 8 • 9]];
Q := [[0,1], [9,10]];
/* Q : = [[0,1], ['r,8, 9]]; ILLEGAL ASSIGNMENT (not rectangular) */
R .- [[0,1], [7,8.,9] J;

6.4 Subprogram Types

Syntax

<subprogram type> ::= <explicit subprogram header>

Semantics
Explicit headers (see section 7.2) supply the names and types of formal

parameters to a subprogram literal. When used as types, they match any
subprogram of the same class taking the same number and equivalent types
of arguments, and returning an equivalent type.

7 Expressions and Statements

Syntax

<statement> ::=
< expression>
<control statement>
<assignment>

<expression> ::=
<subprogram literal>
< expression2 >

expression2 ::= <primary>
I <prefix operator> <expression2>
I <expression2> <infix operator> <expression2>

<primary> ::=
<number>
<string literal>
true
false

13

<identifier>
proc <operator>
<subprogram closure>
<cast>
<constructor>
<primary> <postfix operator>
<indexed expression>
<control expression>
(<expression>)

<predefined operator> ::=

** I (0 I <(0)

* I / I rem I mod I div I < <
+ I - I (+) 1#
= I < I > I <= I >= I /= I in
and I or I not I on

As given, this grammar is ambiguous; the ambiguity is resolved by priority
and grouping rules. In the listing above, the priorities of operators listed on
the same line are identical; those of operators listed on later lines decreases.
Operators group to the left, except for '**', which groups to the right.

Semantics
The primaries true and false denote the logical constant values.
The primary "proc <operator>" denotes the subprogram denoted by

the specified operator. (It is used in contexts where, for example, the binary
function '+' is to be passed as a parameter.)

The following sections describe the other kinds of expressions and pri­
maries.

7.1 Control Expressions and Statements

Syntax

<control expression> ::=
<if expression>

I begin <block> end
<control statement> ::=

14

<loop statement>
<exit statement>

<if expression> ::=
if <guard> then <block>
{ elsif <guard> then <block> ... }
[else <block>]

fi
<guard> ::=

< logical expression>
< logical map expression>

<loop statement> ::=
[<loop type> <control clause>]

do <block> od
<loop type> ::=

for
I foraH

<control clause> ::=
[<control identifiers clause> from] < domain expression>

[by <integer vector expression>]
<control identifiers clause> ::=

<identifier>
I '[' { <identifier> , ... } + 'J'

<block> ::=
{ <block clause> ';' ... }+ [';']

<block clause> ::=
<constant declaration list>
<variable declaration>
<statement>
<pragma>

<exit statement> ::=

Semantics

return [<expression>]
exit

The terms control expression and control statement generally refer to con-

15

structs whose components are not necessarily evaluated in applicative order.
An if-expression provides for conditional evaluation; it selects values from

its constituent blocks depending on the values of its guards. The guards may
either all be logical expressions, or they may all be maps with identical
domains and codomain logical.

When its guards are logical expressions, evaluation of an if-expression
consists of evaluating the guards in order until they are exhausted or one eval­
uates to true. The corresponding block is evaluated and its value becomes
the value of the if-expression. If none of the logical expressions evaluates to
true, the block following else, if any, is evaluated and supplies the value
of the if-expression. Otherwise, the if-expression has a void value. If the
expression occurs in a context requiring a non-void value, then all the blocks
must yield values of the same type, and it is an error for the if-expression to
yield a void value.

When its guards are all maps with codomain logical, an if-expression's
blocks must also be maps whose domains have the same arity as those of its
guards, and whose codomains must be identical. The result of evaluating

if C1 then El ... elsif Cn then En else Ed fi

is a map M whose domain is the union of the domains of the C, and whose
codomain is the same as the E,. If p is in the domain of M then M [P] is
computed by

if C1 [P] then EI [P] ... elsif Cn[P] then Enlp] else Ed/p] fi

Evaluation of a loop statement causes repeated evaluation of the block
(which is called the loop body.) The loop always yields a void value. In
the absence of a control clause, a loop iterates until an exit statement is
evaluated.

When an control clause is supplied, the loop body is repeated for each
value specified by the control clause, which are bound in turn to the control
identifiers, if present. The loop expression declares any control identifiers,
whose scope is the loop itself. The control clause specifies a (possibly null)
domain (a subset of zn for some n > 0.) If there is a single, unbracketed
identifier, it is bound to the elements of this domain in some sequence. When
the control identifier clause is a bracketed list of identifiers, [it, ... in], then
n must be the arity of the domain and for each element, p, of the domain, in
some order, the i j are bound to p[j] (so that p = [i l , ... I in]).

16

The control clause determines the domain as follows. The domain ex­
pression must have a value, D, of type domain [n] for some n (compatible
with the control identifiers clause.) The array expression following the key­
word by, if present, must have a value, S, of type [1 .. n] integer or, if
n = 1, of type integer (which we'll treat as a one-element array in what
follows). The elements of S must all be positive. H this array expression is
not present, S defaults to an array whose elements are alil. Infonnally, the
array expression specifies a step size for each of the indices of the domain.
More rigorously, the domain specified by the control clause is given by the
following expression.

shift(expand(contract (shift(D), S), S), [lwb(D, 1), ... , Iwb(D, n)])

If the loop type is for, then the iterations of the loop body happen se­
quen tially. H the domain expression is a rectangular domain constructor,
its elements are enumerated in lexicographic order (last index varying most
rapidly in increasing order). Otherwise, no order is guaranteed. When the
loop type is foraH, the iterations of the loop proceed collaterally (possibly in
parallel.) Nothing can be guaranteed about the effects of multiple iterations
writing to the same variable, or in general about the order of any side-effects.

Evaluation of a block causes the evaluation of its constituent statements
in order. This evaluation may be interrupted by the evaluation of an exit
statement. The value of a block is that of its last clause (or void if the last
clause is a declaration.) A block is a defining scope.

Exit statements provide means of leaving a loop or subprogram body.
Evaluating an exit terminates the innermost enclosing loop expression. Eval­
uating a return terminates the evaluation of the innermost dynamically en­
closing subprogram body, yielding the value of the given expression, which
must be of the type returned by the subprogram, as the value of that body.
No expression may be supplied for a procedure (a subprogram with a void
value.) An exit statement may not cause exit from a for all loop.

Examples

for [1 N] do Sod; 1* Repeat S N times. *1

for i from [1 .. N] do S := A(i] + Sod;

17

1* Add elements 1 to N of A to S. *1

for [i.j] from [1 .. N. 1 .. N] do M := max(M,A[i,j]) od;
(or p from domainOf(A) do M := max(M,A[pJ) od;

1* Find the maximum of all elements in A (tvo ways). *1

for [i,j] from [0 .. N, o .. N] by [1,2J do Sod;
1* Repeat S for [i,jJ at [0,0] J [1,2], ...• [1,0] J [1,2], .. , *1

7.2 Subprogram Literals

Syntax

<subprogram literal> ::=
<subprogram header> : <subprogram body>

<subprogram header> ::=
[inline] <explicit header>

<explicit header> ::=
selector [({ <formal> ; ... } +)] - > <type>

I proc [({ <formal> ; ... }+)] -> <type>
I proc ({ <formal> j ••• }+)

<formal> ::=

[ref] <formal type> { <identifier> , ... } +
<subprogram body> ::=

Semantics

< expression>
external <identifier>
forward

A subprogram may either be a procedure, which performs a computation
and may return a value, or a selector, which performs a computation and
returns an assignable variable or a value. A subprogram literal is itself a
defining scope.

A subprogram generally takes parameters, whose types must be declared
in the subprogram header. Parameters may be passed either by value-the
called routine being passed a copy of the argument-or (as indicated by the

18

keyword ref) by reference-the formal parameter of the called routine is
identified with the actual parameter during execution of the call.

The body of a suhprogiam indicates the computation to be performed
or the object to be returned. When the body is an expression, its type
must be assignment compatible with that of any return type specified for the
subprogram. For a selector, that part of the expression denoting its value
must have the form of an object denotation, and the type of the denoted
ob ject must be equivalent to that specified as the return type.

When the body of a subprogram is the clause external P, and the
subprogram is used in a program, the subprogram identifier P must must be
declared with an expression as body elsewhere in the compilation or must be
exported with an expression as body from some compilation in that program.
The type of P must be that indicated by the header.

Subprogram literals whose body is the keyword forward may only ap­
pear as the expression in a constant declaration. If the constant declaration
in which it appears is used in the compilation, then there" must be a corre­
sponding complete constant declaration in the same defining scope, with the
same identifier, and in which the expression is again a subprogram literal
with the same type. There may be more than one incomplete declaration for
a given complete declaration, and each incomplete declaration may appear
either before or after the corresponding complete declaration.

The modifier inline has no effect on the type of the subprogram. Subpro­
grams so modified are called inline subprograms. They may not be recursive;
they may not be exported; and their first use must appear after their com­
plete definition.

7.3 Subprogram Calls and Partial Closures

Syntax

<subprogram closure> ::=

<procedure-primary> '(' { <closure argument> , ... }+ ')'
<closure argument> ::=

<expression>
<type>
'?'

19

Semantics
A subprogram closure first causes evaluation of any arguments. In the

case of an argument that is a type, evaluation consists of the evaluation of any
subexpressions within the type. If all arguments to the function are present,
then execution continues with execution of the body of the subprogram des­
ignated by the procedure primary. In this case, the closure is called a call.
If r > 0 arguments are missing (that is, are left null, with the surrounding
commas left in,) then the closure is called a partial closure of the designated
subprogram. The value of this partial closure is itself a subprogram taking
r arguments. At least one argument must be supplied in a partial closure.
When this partial closure's value is itself called with r arguments, the result
is as if those argument values were inserted for the arguments missing from
the closure and the result treated as an ordinary call.

A subprogram with no arguments must have a void value (it is executed
for its side-effects alone.) To be called, this subprogram's designator must
be followed by empty parentheses.

The order in which argument expressions are evaluated is undefined.

7.4 Casts

Syntax

<cast> ::=
<type identifier> (<expression>)

Semantics
A cast specifically indicates the type of an expression or coerces a value

of one type into an isomorphic value of another. In the cast T(E), the value
of E may be of type T or it may be isomorphic in the following ways .

• E may be a record and T may be a record type with the same number,
order, and types of fields. The result is of type T .

• E may denote a 5ubprogram--or, through overloading, several subprograms­
and T may be a subprogram type. The resulting expression denotes
those subprograms denoted by E that conform to the type T (Le., that
unify with T).

20

7.5 Constructors

Syntax

<constructor> ::=
<map constructor>
<record constructor>
<rectangular domain constructor>

<map constructor> ::=
'[' { <expression> , ... } + 'J'
'[' <control clause> : <expression> 'J'

<record constructor> ::=
< record type identifier> 4 [' { <expression> , ... } + 'J'

<rectangular domain constructor> ::=
'[' { <dimension> , ... } + 'J'

<dimension> ::=

<integer expression> .. <integer expression>

Semantics
Constructors are expressions that build composite objects. The compo­

nents specified by the expressions must conform in type and number to the
components indicated by this type. Both maps and records may be specified
extensionally-as a list of expressions. The nth component expression corre­
sponds to the nth field of the record or to a first index of n for a map. In an
extensional map constructor for a map of arity n, the component expressions
are maps of arity n - 1.

A map constructor may also specify a rule (the second form given in the
syntax.) The control clause (see section 7.1) then specifies the domain of
the map. For each item of the domain, the expression is evaluated to give
the image of that value. If the control clause specifies control identifiers,
these may be used in the expression. Evaluation is as for for all: no order is
specified and the elements may, in fact, be evaluated in parallel.

A record constructor for a record type, R, whose fields have types Ti may
also be applied to arguments whose types are [D] 1i for some (common)
domain D. The result is of type [D]R; its fields' values at a given domain
point are those of the arguments at that point. Likewise, such a record
constructor may also be applied to arguments of type [DI] [D2] T with result
of type [D1] [D2] R, and so forth.

21

The domain constructor yields a domain consisting of all tuples of integers
such that each integer is in the range denoted by the corresponding element
of the dimension list.

Examples

[[1 .. 10] 0]
[i from [1 .. 10]

7.6 Indexing

Syntax

1* The constant 0 map on the domain 1 .. 10. *1
i] 1* The identity map on the domain 1 .. 10 *1

<indexed expression> ::=
<map primary> { <indexer> ... } +

<indexer> ::=
'[' { [<expression>] , ... } (]'

Semantics
The notation" A[ob ... ,on]" is equivalent to "A[Ol]'" [an]." In the fol­

lowing discussion, we assume the latter form.
Indexing a map produces the value or (assignable) object in the codomain

of a map corresponding to a given element of the domain. The expressions
may be integers, in which case the domain value is the tuple consisting of
those integers, or there may be a single expression in the domain of the map.
It is an error if the index is not in the current domain of the map.

An expression E of the form

A [] ... [] [in] , ---..-..-
n

is a selector denoting a map object with the property that

(Le., these two expressions denote the same variable; taking their value or
assigning to them have identical results.)

22

7.7 Assignment

Syntax

<assignment> ::=
<left side> ::= <right side>
<left side> *: = <right side>

<left side> ::=
<object expression>
({ <object expression> , ... }+)

<right side> ::=
<expression>
({ <expression> , ... })

Semantics
An <object expression> in the syntax above refers to an expression that

designates an (assignable) object (a variable, indexed expression, or selector
call). An assignment may be to one or to several such objects simultaneously.
In the latter case, the right side may be either a single, record-valued or map­
valued expression-whose components are assigned in order to the objects
on the left side--or a parenthesized list of values. There must be identical
n umbers of values to be assigned as objects to receive them.

The' :=' operator assigns an entire object of any type. The types of the
right-side entities must be assignment compatible with those of the corre­
sponding left-side objects. A flexible map object may receive a map value
with any domain of the appropriate arity. A non-flexible map object may
only receive maps with identical domains. These rules apply recursively to
the elements of the codomain.

The '*: =' operator applies only to maps. The rules governing it are the
same as for': =', except that it assigns values from the right side(s) only at
points in the intersection of the domains of the left and right sides.

7.8 Standard Functions and Operators

Table 1 gives the standard operators and functions on domains. Tables 2-5
give the standard operators and functions on maps. Tables 6 and 7 give the
standard arithmetic and mathematical operators.

23

Expression

pin D

lwb(D)
upb(D)

arity(D)
shift(D, S), D « S

shifteD)

contract (D, S)

expand(D, S)
accrete(D)

boundary(D)

Meaning

Union of Dl and D2 •

Intersection of Dl and D 2 •

Set difference of Dl and D2 •

where D is a domain of arity nand p is an array of type
valtype CD): a logical expression that is true iff p is a
member of D.

for a domain of arity n: An integer map with domain
[l..n] (for n = 1, an integer) whose kth component is
the minimum (lwb) or maximum (upb) value of of the
kth component of the elements of D.
yields n for a domain of arity n.
Where S is of type valtype(D) and n is the arity of D:
The domain {d + Sid in D}.
Same as shift(D, -lwb(D)).

The domain {d div Sid in D}.

The domain {d*Sld in D}.
The set of points that are within a distance 1 in all co­
ordinates from some point of D.
accrete(D) - D.

Tab1e 1: Opera.tors and functions on domains.

24

Expression

domainOf(X)

toDomain(X)

image(X)

upb(X)
lwb(X)
arity(X)
X#Y

shift(X, S), X < < S
shift(X)

contract(X, S)

expand(X, S)
Xon D
X(+)Y

Meaning

The domain of map X. This may also appear in a left­
hi~d side context if X is a partial map variable. The
result of an assignment to the domain of X is a map
whose initial image consists of undefined values.

where X is a logical map:
{p E domainOf(X)IX[P]}.

where X is a map whose is an integer map of arity n:
the domain of dimension n whose elements are all el­
ements in the image of X-that is, the set {dIX[P] =
d, for some p}.
upb(domainOf(X))
lwb(domainOf(X))
arity(domainOf(X))
The composition of X and Y. X and Yare maps;
Y's codomain must be valtype(domainOf(X)); and
image(Y) must be a subset of domainOf(X).

X # Y is a map object (which is assignable if X is
assignable) such that

(X#Y)[p] = X[Y[p]].
Hence, its domain is domainOf (Y).

where S is a [l..n] integer (an integer for n = 1), with
default value -lwb(X), and n is the arity of X: the map

X # [p from domainOf(X): p-S].

X # [p from contract (domainOf (X) J S) = S*p] .

X # [p from expand (domainOf (X), S): p / S] .
The map X restricted to domain D.
where domainOf(X) n domainOf(Y) = {}: the union
of the graphs of X and Y, whose codomains must be
identical and whose domains must be of identical arity.

Table 2: Operators and functions on mapsi part 1.

25

Expression

Fe

F <c>

compress(X)

compress(X, VV)

decompress(X, W)

sort(X, P)

Meaning

Concatenation of El , ••• , E2 • The Ei must be I-dimen­
sional maps with contiguous domains and some (com­
mon) codomain T, or values of type T, which are treated
as one-element maps with lower bound O. At least one
of the E, must be a map on T. The result has the same
lower bound as El and an upper bound equal to the sum
of the lengths of the Ei .

Assuming that F takes arguments of type 1i and returns
a result of type T, Fe is a fUDction extending F to argu­
ments of type [Di] Ii, where the D. are domains of the
same arity, and returns a result of type [D] T, where D
is the intersection of the Di- The result of applying this
function is the result of applying F pointwise to the ele­
ments corresponding to the intersection of the argument
domains.
for F as above returning type T1: The extension of F to
arguments of types [Di]T as above, returning a value of
type [D1]T1 defined by

F< @ >(xt, ... ,xn)

= F@(xI, ... ,xn) (+) (Xl on (DI - D)).

where X is a map on a domain of arity 1: The one­
dimensional map, X' with a contiguous domain having a
lower bound of 1 such that X'[i] is the value of X[Pd, for
Pi the ith smallest element in the domain of X.

where VV is a one-dimensional map whose codomain is
logical: compress(X on toDomain(W)).

The map X' such that
compress(X', W) = compress(X).

where X is a contiguous, one-dimensional map with co­
domain T and P is logical-valued binary function with
arguments of type T: the map X' with the same domain
as X that results from permuting the image of X so that
i < j implies P(X'[i], X'[jD. The permutation is strict:
the order of irri§ge elements x and y such that P(x, y)
and P(y, x) is unchanged by the sort.

Table 3: Opera.tors a.nd functions on maps, part 2.

Expression

reduce(X, /, S)
Meaning

where X is a rectangular map of arity n and codomain C;
S = [i b •.• , i,.], 1 ~ i 1 < ... < ir ~ n; and / is a function
taking two arguments of type C and yielding a result of
type C. The result, B, is of type T = [*(n - r)]C, or
T = C if n = r, and is defined as follows.

B[jt, ... ,ji1 -t,ji1+b"'] =
/(f(··· f(vt, V2)," .), vrn }.

or VI if m = 1, where the Vi are the elements
X[jI, ... , j'l-b k,ji1+b"'}

for all k for which the expression is defined, taken in some
undefined order. The domain of B contains only those
indices for which m > O.

reduce(X, f, vo) where X is any map with codomain C; Vo is of type C;
and f is as above. The result is of type C and has the
value Vo is the domain of X is empty, and otherwise

f(f(· .. f(Vo, vt}, ...), vm)

where the Vi, i > 0 are the elements of X is some unde­
fined order.

trace(A, S) reduce(A,proc +, S)

Table 4: Operators and functions on maps, part 3.

27

Expression Meaning
outerproduct(A, B) where A and B are maps with rectangular domains of

dimensions nil and nb and the same codomains: The map
C defined as follows.

trans pose(X [, 1r])

flip(X,1r)

flip(X)

remap(X,S)

C[i b .•• , inG,il,'" ,in,,] =
A[il' ... , inJ*B[jt, ... ,jnb]

where 1r = [1rt, ... , 1rn] is a permutation of the integers
between 1 and n, and n is the arity of the map X: The ob­
ject, X', resulting from transposing the indices of X ac­
cording to 1r. Specifically, X'[iW1 , ••• ,iwn1 = X[ib ... ,in].
The default for 1r is [2,1].
where X is of type [DIJ ... [Dnl T: The map, X' defined
by the following.

X'[P1rl] ... [P7rn] = X[Pl] ... [Pn]'
The default for 1r is [2,1].
where X is a record of maps with identical domains: pro­
duces the map taking p in the common domain to the
record with field values Fi[P], where the Pi are the fields
of X. X can also be a map of records, in which case flip
performs the inverse operation.
where S = nt, ... , nr: The object resulting from "reasso­
ciating" the indices of X to form an isomorphic object of
type [Dl]'" [DrlT where T is the appropriate codomain
and each Di is of type [*ni]' S must be a compile-time
constant map.

Table 5: Operators and functions on maps, part 4.

28

Expression

+, -, *, I, **
rem, mod, div

<, >, <=, >=, =, 1=

and, or, not
exp(x), In(x), 10glO(x)
sin (x), cos(x), tan (x)
sqrt(x)
atan(x), atan(x,y)

abs(x)

floor(x), trunc(x),
round(x),
toSingle(x),
toLong(x),
tolnt(x)

Meaning

For scalar arguments, the standard arithmetic operators. The
division operator, 'I', produces a long real result when its
operands are integers. The binary operator div applies to
integers, producing the quotient of its operands truncated to
an integer. The rem operator is defined by the formula x =
(x div y)*y + (x rem v), for y -# O. The mod operator is
defined by x mod y = x - y Lx/yJ , for y -# O. The same
conversion rules apply as for FORTRAN.
When applied to maps of the same arity and codomain, these
operators apply pointwise, producing a map whose domain
is the intersection of the domains of operands. Finally, the
operators are also overloaded to allow one operand to be of
a scalar type T and the other to be a map whose codomain
has a type that the operator can legally combine with type T.
In this case, the operand of type T is treated as a constant
map with the same domain as the other operand. This latter
definition is recursive; for example, the codomain of the map
operand may itself be a map.
Relational operators (/ = is "not equaL") These operators also
extend to maps as for the arithmetic operators.

The standard logical connectives. These also extend to maps.
The standard elementary mathematical functions. They are
defined on real and complex quantities, yielding results of the
same type.

Absolute value. For real and complex quantities, yields a real
value of the same length, otherwise an integer.
Scalar coercions. Floor, truDc, and round apply to reals, pro­
ducing results rounded toward - inf, toward 0, and toward
nearest. The functions, tolnt, toSingle, and to Long apply to
all types, converting to the nearest integer, single-length real
(complex), or long real (complex) quantity. The last three
operations also act on logical values, converting true to 1 or
1.0 and false to 0 or 0.0.

Table 6: Arithmetic Operator~~d Elementary Functions, part 1.

Expression

max(xt, ... , xn)
min(x}, ... l xn)

signum(X)

realPart(Z), imagPart(Z)

Meaning
Maximum and minimum. All operands must be of the
same type--an integer or real type.

Returns the integer -1, 0, or 1, depending on whether X
(which may be an integral or real) is negative, zero, or
positive.
Real and imaginary parts of the complex quantity Z. Ei­
ther of type real or long real, depending on the the type
of Z.

Table 7: Arithmetic Operators and Elementary Functions, part 2.

8 Pragmas

A pragma is an "escape clause" allowing the programmer to give the trans­
lator advice or other directives that have no semantic effect or that do not
fit naturally into the rest of the language.

Syntax

<pragma> ::=
pragma <pragma identifier> ['(' { <pragma argument> , ... }+ ')']

<pragma argument> ::=
<expression>
<type>

Semantics
The possible pragma identifiers are given in Table 8. User declarations of

these identifiers are ignored in this context. The interpretation of a pragma's
arguments depends on the particular pragmaj it need not follow the usual
strictures of FIDIL semantics.

30

Expression

vectorize(X [, n])

rectangular (X)

thin(X)

thick(X)

, .

Meaning

X must be an identifier of a map type, value, or object, or a
domain type, value, or object, and n must be a positive compile­
time integer constant. The value of n defaults to 1. IT X is a map
type identifier, the pragma suggests that the compiler attempt
to vectorize over the nth index of objects declared using identifier
X (i.e., variables, formal parameters, results of casts to type X).
If the domain of X has an arity m 2 n, this is the nth index of
the domain of an X, and otherwise is the (m - n)th index of the
codomain type of X.
If X is a domain type identifier, the pragma suggests vectorizing
over the nth index of X whenever D is used to specify a map
domain.
Finally, if X is a map or domain object or value, the suggestion
applies only to that particular object.
X is as for vectorize, above. Suggests that the domain (of) X (or
of all instances of X) be represented as a union of rectangular
grids.
X is as for rectangular. Suggests that the domain (of) X (or of
all instances of X) use a sparse representation.
X is as for rectangular. Suggests that the domain (of) X (or
of all instances of X) use a representation consisting of a union
of rectangles, together with a logical map indicating missing
domain elements.

Table 8: Pragmas.

31

